


Classical Examples

Let H(C) = {f : C — C|f analytic} = the set of all entire
functions f : C — C.

Kit Chan Zero-One Laws for Hypercyclicity



Classical Examples

Let H(C) = {f : C — C|f analytic} = the set of all entire
functions f : C — C.

Convergence: \f, — f in H(C)" means \f, — f uniformly on
compact subsets of C."

Kit Chan Zero-One Laws for Hypercyclicity



Classical Examples

Let H(C) = {f : C — C|f analytic} = the set of all entire
functions f : C — C.

Convergence: \f, — f in H(C)" means \f, — f uniformly on
compact subsets of C."

e Birkho (1929): There is a function f € H(C) so that
{f(2),f(z+1),f(z+2),f(z+3)...}isdense in H(C).
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Classical Examples

Let H(C) = {f : C — C|f analytic} = the set of all entire
functions f : C — C.

Convergence: \f, — f in H(C)" means \f, — f uniformly on
compact subsets of C."

e Birkho (1929): There is a function f € H(C) so that
{f(2),f(z+1),f(z+2),f(z+3)...}isdense in H(C).

e G. R. MacLane (1952): There is a function f € H(C) so that
{f2),f'(2),f"(2),f"(z) ...} is dense in H(C).
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Classical Examples

Let H(C) = {f : C — C|f analytic} = the set of all entire
functions f : C — C.

Convergence: \f, — f in H(C)" means \f, — f uniformly on
compact subsets of C."

e Birkho (1929): There is a function f € H(C) so that
{f(2),f(z+1),f(z+2),f(z+3)...}isdense in H(C).

e G. R. MacLane (1952): There is a function f € H(C) so that
{f2),f'(2),f"(2),f"(z) ...} is dense in H(C).

Letp > 1, and B : ¢ — ¢P be the unilateral backward shift
de ned by B(ag,ai,a»,...) = (a1,ap,as,...).

e Rolewicz (1969): If t € (1, c0), then there exists a vector X in
(P so that {x, (tB)x, (tB)?x, (tB)3x, ...} is dense in ¢~.
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Hypercyclicity Criterion

Let X be a separable, in nite-dimensional Banach space over C,
and B(X) = {T : X — X|T is bounded and linear}.
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Hypercyclicity Criterion

Let X be a separable, in nite-dimensional Banach space over C,
and B(X) = {T : X — X|T is bounded and linear}.

De nition. A bounded linear operator T in B(X) is hypercyclic if
there is a vector x whose orbit orb(T,x) = {x, Tx, T?x, T3x,...}
is dense in X. Such a vector x is called a hypercyclic vector.
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Hypercyclicity Criterion

Let X be a separable, in nite-dimensional Banach space over C,
and B(X) = {T : X — X|T is bounded and linear}.

De nition. A bounded linear operator T in B(X) is hypercyclic if
there is a vector x whose orbit orb(T,x) = {x, Tx, T?x, T3x,...}
is dense in X. Such a vector x is called a hypercyclic vector.

o Kitai (1982), Gethner and Shapiro (1987): T : X — X is
hypercyclic if there is a dense set D of X and T has a right
inverse S so that T"x — 0 and S"x — 0 for each vector
x € D.
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The Invariant Subspace Problem

orb(T,x) = {x, Tx, T2x,T3x,...} = the smallest closed invariant
subset containing X.




The Invariant Subspace Problem

orb(T,x) = {x, Tx, T2x,T3x,...} = the smallest closed invariant
subset containing X.

span orb(T,x) = {p(T)x : p is a polynomial} = the smallest
closed invariant subspace containing X.
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closed invariant subspace containing X.

Invariant Subspace Problem (1920s, still open today): Must every
bounded linear operator T : H — H on an in nite dimensional
separable Hilbert space H have a nontrivial invariant subspace?
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orb(T,x) = {x, Tx, T2x,T3x,...} = the smallest closed invariant
subset containing X.

span orb(T,x) = {p(T)x : p is a polynomial} = the smallest
closed invariant subspace containing X.

Invariant Subspace Problem (1920s, still open today): Must every
bounded linear operator T : H — H on an in nite dimensional
separable Hilbert space H have a nontrivial invariant subspace?

e En 0 (1987): Not if the space is ¢1. That is, there is an
operator T on ¢! for which every nonzero vector x has the
property that span orb(T,x) = ¢.
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The Invariant Subspace Problem

orb(T,x) = {x, Tx, T2x,T3x,...} = the smallest closed invariant
subset containing X.

span orb(T,x) = {p(T)x : p is a polynomial} = the smallest
closed invariant subspace containing X.

Invariant Subspace Problem (1920s, still open today): Must every
bounded linear operator T : H — H on an in nite dimensional
separable Hilbert space H have a nontrivial invariant subspace?

e En 0 (1987): Not if the space is ¢1. That is, there is an
operator T on ¢! for which every nonzero vector x has the
property that span orb(T,x) = ¢.

o Read (1989): There is an operator T on ¢* with no nontrivial
closed invariant subset. That is, every nonzero vector x has
the property that orb(T,x) = /.
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Nonhypercyclic Operators

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take X = C". The adjoint T* : C" — C" has an eigenvalue
a € C. Suppose T*y = ay.
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Nonhypercyclic Operators

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take X = C". The adjoint T* : C" — C" has an eigenvalue
a € C. Suppose T*y = ay. Then for any vector x € C”,

<T™,y>=<x,T*"y >=<x,a"y >= a" <X,y >,

which cannot be dense in C. O
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If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take X = C". The adjoint T* : C" — C" has an eigenvalue
a € C. Suppose T*y = ay. Then for any vector x € C”,

<T™,y>=<x,T*"y >=<x,a"y >= a" <X,y >,
which cannot be dense in C. O

Back to the case when X is in nite dimensional.
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Nonhypercyclic Operators

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take X = C". The adjoint T* : C" — C" has an eigenvalue
a € C. Suppose T*y = ay. Then for any vector x € C”,

<T™,y>=<x,T*"y >=<x,a"y >= a" <X,y >,
which cannot be dense in C. O
Back to the case when X is in nite dimensional.

If F: X — X has nite rank (that is, dim ranF < c0), then | +F
is not hypercyclic.
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Nonhypercyclic Operators

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take X = C". The adjoint T* : C" — C" has an eigenvalue
a € C. Suppose T*y = ay. Then for any vector x € C”,

<T™,y>=<x,T*"y >=<x,a"y >= a" <X,y >,
which cannot be dense in C. O
Back to the case when X is in nite dimensional.

If F: X — X has nite rank (that is, dim ranF < c0), then | +F
is not hypercyclic.

If T : X — X is compact, then T is not hypercyclic.
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Nonhypercyclic Operators

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take X = C". The adjoint T* : C" — C" has an eigenvalue
a € C. Suppose T*y = ay. Then for any vector x € C”,

<T™,y>=<x,T*"y >=<x,a"y >= a" <X,y >,
which cannot be dense in C. O
Back to the case when X is in nite dimensional.

If F: X — X has nite rank (that is, dim ranF < c0), then | +F
is not hypercyclic.

If T : X — X is compact, then T is not hypercyclic.
If X is a Hilbert space, no normal operator is hypercyclic.
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Hypercyclic vectors

Suppose {x; :j > 1} is a countable dense subset of X, and x is a

vector in X. For x to be a hypercyclic vector, the following must
hold:

For all x; and for all ¢ > 0, there is a integer n such that
[T = x|l <€
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Hypercyclic vectors

Suppose {x; :j > 1} is a countable dense subset of X, and x is a
vector in X. For x to be a hypercyclic vector, the following must
hold:

For all x; and for all ¢ > 0, there is a integer n such that
[T = x|l <€

Equivalently, x € T ~"B (X}, €).
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Hypercyclic vectors

Suppose {x; :j > 1} is a countable dense subset of X, and x is a
vector in X. For x to be a hypercyclic vector, the following must
hold:

For all x; and for all ¢ > 0, there is a integer n such that
[T = x|l <€

Equivalently, x € T ~"B (X}, €).

Let HC(T) = {x € X|x is a hypercyclic vector for T }.
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Hypercyclic vectors

Suppose {x; :j > 1} is a countable dense subset of X, and x is a
vector in X. For x to be a hypercyclic vector, the following must
hold:

For all x; and for all ¢ > 0, there is a integer n such that
[T = x|l <€

Equivalently, x € T ~"B (X}, €).

Let HC(T) =



A Basic Zero-One Law for Hypercyclic Vectors

o Kitai (1982): For any operator T in B(X), either HC(T) is
either ¢ or a dense G set.
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A Basic Zero-One Law for Hypercyclic Vectors

o Kitai (1982): For any operator T in B(X), either HC(T) is
either ¢ or a dense G set.
Baire Category Theorem ——-

If {T,:X — X|n > 1} is a countable collection of hypercyclic
operators, then their set of common hypercyclic vectors

[ HC(Tn)

n=1

is a dense G set.
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A Basic Zero-One Law for Hypercyclic Vectors

o Kitai (1982): For any operator T in B(X), either HC(T) is
either ¢ or a dense G set.
Baire Category Theorem ——-

If {T,:X — X|n > 1} is a countable collection of hypercyclic
operators, then their set of common hypercyclic vectors

[ HC(Tn)

n=1

is a dense G set.

e Salas (1999): If B is the unilateral backward shift, is the set
of common hypercyclic vectors

(] HC@B) # ¢?

t>1
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Existence of a G5 Set of Common Hypercyclic Vectors

o Abakumov & Gordon (2003): (] HC(tB) = the set of

1<t
common hypercyclic vectors for tB is a dense G set.
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Existence of a G5 Set of Common Hypercyclic Vectors

o Abakumov & Gordon (2003): (] HC(tB) = the set of

1<t
common hypercyclic vectors for tB is a dense G set.

@ Costakis & Sambarino (2004): Reproved the above result with
a simpler proof by introducing a su cient condition for
common hypercyclicity, and showed other applications.
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Existence of a G5 Set of Common Hypercyclic Vectors

o Abakumov & Gordon (2003): (] HC(tB) = the set of

1<t
common hypercyclic vectors for tB is a dense G set.

@ Costakis & Sambarino (2004): Reproved the above result with



Unilateral Weighted Backward Shifts on ¢P

T : /P — ¢P is said to be a unilateral weighted backward shift if
there is a bounded positive weight sequence {w; : j > 1} such that

T(ap,a1,az2,...) = (Wia, Woaz, W3as,...).
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Unilateral Weighted Backward Shifts on ¢P

T : /P — ¢P is said to be a unilateral weighted backward shift if
there is a bounded positive weight sequence {w; : j > 1} such that

T(ap,a1,az2,...) = (Wia, Woaz, W3as,...).

e Salas (1995): A unilateral weighted backward shift T is
hypercyclic if and only if sup{wiwz---w, :n > 1} = co.
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Unilateral Weighted Backward Shifts on ¢P

T : /P — ¢P is said to be a unilateral weighted backward shift if
there is a bounded positive weight sequence {w; : j > 1} such that

T(ap,a1,az2,...) = (Wia, Woaz, W3as,...).

e Salas (1995): A unilateral weighted backward shift T is
hypercyclic if and only if sup{wiwz---w, :n > 1} = co.

e Grosse-Erdmann (2000): Generalizations to Frechet spaces.
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Bilateral Weighted Shifts on /P

T : ¢P — £P is a bilateral weighted backward shift if there is a
bounded positive weight sequence {w; : j € Z} such that

zeroth zeroth
AN _ w’\
T(...,a_l, ao ,al,...) = (...,w_la_l, , Wpdp, Widy, Wzaz,...).
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Bilateral Weighted Shifts on /P

T : ¢P — £P is a bilateral weighted backward shift if there is a
bounded positive weight sequence {w; : j € Z} such that

zeroth zeroth
AN — ﬁr‘\
T(...,a_l, ao ,al,...) = (...,w_la_l, , Wpdp, Widy, Wzaz,...).

e Salas (1995): A bilateral weighted shift T is hypercyclic if and
only if for any ¢ > 0, and q € N, there is an arbitrarily large n
such that whenever k| < q,

n 1 n—1
Wgs+j > — and Wi_j < €.
II k+j B II k—j
Jj=1 j=0
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Paths of Hypercyclic Weighted Shifts on P

e with Sanders (2009): Between any two hypercyclic unilateral
weighted backward shifts, there is a path of such operators
with a dense G set of common hypercyclic vectors. Also,
there is a path of such operators with no common hypercyclic
vectors.
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Paths of Hypercyclic Weighted Shifts on P

e with Sanders (2009): Between any two hypercyclic unilateral
weighted backward shifts, there is a path of such operators
with a dense G set of common hypercyclic vectors. Also,
there is a path of such operators with no common hypercyclic
vectors.

o Corollary: The hypercyclic unilateral weighted backward shifts
form a path-connected subset in the operator algebra.
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Paths of Hypercyclic Weighted Shifts on P

e with Sanders (2009): Between any two hypercyclic unilateral
weighted backward shifts, there is a path of such operators
with a dense G set of common hypercyclic vectors. Also,
there is a path of such operators with no common hypercyclic
vectors.

o Corollary: The hypercyclic unilateral weighted backward shifts
form a path-connected subset in the operator algebra.

e The same holds true for bilateral weighted shifts.
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Paths of Hypercyclic Weighted Shifts on P

e with Sanders (2009): Between any two hypercyclic unilateral
weighted backward shifts, there is a path of such operators
with a dense G set of common hypercyclic vectors. Also,
there is a path of such operators with no common hypercyclic
vectors.

o Corollary: The hypercyclic unilateral weighted backward shifts
form a path-connected subset in the operator algebra.

e The same holds true for bilateral weighted shifts.

Natural Question: Can we have \a lot" of operators in a path and
yet their common hypercyclic vectors still form a dense G subset?
What do we mean by \a lot"?
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Existence of Hypercyclic Operators

e Ansari (1997) : For every separable, in nite dimensional
Banach space X, there is a hypercyclic operator T in B(X).
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Existence of Hypercyclic Operators

e Ansari (1997) : For every separable, in nite dimensional
Banach space X, there is a hypercyclic operator T in B(X).

De nition. A vector x € X is said to be a periodic point of an
operator T in B(X) if there is a positive integer n such that
T"'x =x.

De nition. An operator on X is said to be chaotic if and only if it
is hypercyclic and has a dense set of periodic points.
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Existence of Hypercyclic Operators

e Ansari (1997) : For every separable, in nite dimensional
Banach space X, there is a hypercyclic operator T in B(X).

De nition. A vector x € X is said to be a periodic point of an
operator T in B(X) if there is a positive integer n such that
T"'x =x.

De nition. An operator on X is said to be chaotic if and only if it
is hypercyclic and has a dense set of periodic points.

e Bonet & Mart nez-Gimenez & Peris (2001): There is a
separable, in nite dimensional Banach space which admits no
chaotic operator.
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A Zero-One Law for Chaotic Operators

SOT = Strong Operator Topology of the operator algebra B (X).

@ (2002): For a separable, in nite dimensional Hilbert space H,
the hypercyclic operators on H are SOT-dense in B(H).
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A Zero-One Law for Chaotic Operators

SOT = Strong Operator Topology of the operator algebra B (X).

@ (2002): For a separable, in nite dimensional Hilbert space H,
the hypercyclic operators on H are SOT-dense in B(H).

e with Bes (2003): The set of chaotic operators on a separable,
in nite dimensional Banach space X is either empty or
SOT-dense in B(X).

Kit Chan Zero-One Laws for Hypercyclicity



A Zero-One Law for Chaotic Operators

SOT = Strong Operator Topology of the operator algebra B (X).

@ (2002): For a separable, in nite dimensional Hilbert space H,
the hypercyclic operators on H are SOT-dense in B(H).

e with Bes (2003): The set of chaotic operators on a separable,
in nite dimensional Banach space X is either empty or
SOT-dense in B(X).

Indeed, if T € B(X) is hypercyclic, then its conjugate class,
or similarity orbit, {A=1TA : A invertible on X} is SOT-dense
in B(X).
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A Double Density Theorem

Let H be separable, in nite dimensional Hilbert space over C.

e with Sanders (2011): There is a path of chaotic operators in
B(H) that is SOT-dense in B(H), and each operator on the
path shares the exact same set G of common hypercyclic
vectors.
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A Double Density Theorem

Let H be separable, in nite dimensional Hilbert space over C.

e with Sanders (2011): There is a path of chaotic operators in
B(H) that is SOT-dense in B(H), and each operator on the
path shares the exact same set G of common hypercyclic
vectors.

e Corollary: The path can be taken so that each operator along
the path satis es the hypercyclicity criterion.
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A Double Density Theorem

Let H be separable, in nite dimensional Hilbert space over C.

e with Sanders (2011): There is a path of chaotic operators in
B(H) that is SOT-dense in B(H), and each operator on the
path shares the exact same set G of common hypercyclic
vectors.

e Corollary: The path can be taken so that each operator along
the path satis es the hypercyclicity criterion.

@ Corollary: The hypercyclic operators in B(H) are
SOT-connected.

e Corollary: The hypercyclic operators T in B(H) with
G C HC(T) are SOT-connected.
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Similarity Orbits

For an operator T : X — X on a Banach space X, we let
S(T) = {A~ITA|A invertible} be the similarity orbit of T.
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Similarity Orbits

For an operator T : X — X on a Banach space X, we let
S(T) = {A~ITA|A invertible} be the similarity orbit of T.

e with Sanders (2011): S(T) contains a path of operators
which is SOT-dense in B(X) and for which the set of common
hypercyclic vectors for the whole path is a dense G set.
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Similarity Orbits

For an operator T : X — X on a Banach space X, we let
S(T) = {A~ITA|A invertible} be the similarity orbit of T.

e with Sanders (2011): S(T) contains a path of operators
which is SOT-dense in B(X) and for which the set of common
hypercyclic vectors for the whole path is a dense G set.

Observations of some zero-one phenomenon:
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Similarity Orbits

For an operator T : X — X on a Banach space X, we let
S(T) = {A~ITA|A invertible} be the similarity orbit of T.

e with Sanders (2011): S(T) contains a path of operators
which is SOT-dense in B(X) and for which the set of common
hypercyclic vectors for the whole path is a dense G set.

Observations of some zero-one phenomenon:

(1) If HC(T) = X \ {0}, the set of common hypercyclic vectors for
S(T) is also X \ {0}.

(2) If HC(T) # X \ {0}, the set of common hypercyclic vectors for
S(T) is empty.
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Unitary Orbits

For an operator T on a Hilbert space H, we let
U=



Unitary Orbits

For an operator T on a Hilbert space H, we let
U(T) ={U~1TU : U unitary}, the unitary orbit of T.

{unitary operators on H} path connected = #{/(T) path
connected.
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Unitary Orbits

For an operator T on a Hilbert space H, we let
U(T) ={U~1TU : U unitary}, the unitary orbit of T.

{unitary operators on H} path connected = #{/(T) path
connected.

Every operator in /(T) has the same norm as T. So U(T) does
not contain a path that is SOT-dense in B(H).
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Unitary Orbits

For an operator T on a Hilbert space H, we let
U(T) ={U~1TU : U unitary}, the unitary orbit of T.

{unitary operators on H} path connected = #{/(T) path
connected.

Every operator in /(T) has the same norm as T. So U(T) does
not contain a path that is SOT-dense in B(H).

e with Sanders (2012): If T € B(H) be hypercyclic, then 2/(T)

contains a path P of operators so that fSOT contains U(T)
and the common hypercyclic vectors for P is a dense G set.
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A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.



A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:
(A) T is hypercyclic.
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A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:
(A) T is hypercyclic.
(B) There is a vector whose orbit has a nonzero limit point.
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A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:
(A) T is hypercyclic.
(B) There is a vector whose orbit has a nonzero limit point.
(C) There is a vector whose orbit has a nonzero weak limit point.
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A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:
(A) T is hypercyclic.
(B) There is a vector whose orbit has a nonzero limit point.
(C) There is a vector whose orbit has a nonzero weak limit point.
(D) There is a vector whose orbit has in nitely many members
contained in an open ball whose closure avoids the origin.
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A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:
(A) T is hypercyclic.
(B) There is a vector whose orbit has a nonzero limit point.
(C) There is a vector whose orbit has a nonzero weak limit point.

(D)



A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:
(A) T is hypercyclic.
(B) There is a vector whose orbit has a nonzero limit point.
(C) There is a vector whose orbit has a nonzero weak limit point.
(D) There is a vector whose orbit has in nitely many members
contained in an open ball whose closure avoids the origin.

Corollary: T is not hypercyclic i every orb(T,x) U {0} is closed.
Remark: (A), (B), (D) are equivalent for bilateral weighted shifts.
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A Zero-One Law for Orbital Limit Points

e Bourdon & Feldman (2003): If an orbit orb(T , x) is
somewhere dense in a Banach space X then the orbit
orb(T, x) is everywhere dense.

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:
(A) T is hypercyclic.
(B) There is a vector whose orbit has a nonzero limit point.
(C) There is a vector whose orbit has a nonzero weak limit point.
(D) There is a vector whose orbit has in nitely many members
contained in an open ball whose closure avoids the origin.

Corollary: T is not hypercyclic i every orb(T,x) U {0} is closed.
Remark: (A), (B), (D) are equivalent for bilateral weighted shifts.
e with Sanders (2004): A unilateral weighted backward shift is
hypercyclic if and only if it is weakly hypercyclic. But, there is
a bilateral weighted shift that is weakly hypercyclic but not
hypercyclic.
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A Remark on Theorem

If orb(T ,x) has a nonzero limit point, we can only conclude T is
hypercyclic but we cannot conclude that x is a hypercyclic vector,
and in fact not even a cyclic vector.

A vector x is a cyclic vector for T, if span orb(T,x) is dense in X.
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A Remark on Theorem

If orb(T ,x) has a nonzero limit point, we can only conclude T is
hypercyclic but we cannot conclude that x is a hypercyclic vector,
and in fact not even a cyclic vector.

A vector x is a cyclic vector for T, if span orb(T,x) is dense in X.

Let (e,) be the canonical basis of ¢P.

o with Seceleanu (preprint, 2013): The vector x is a cyclic
vector for T, if

(1) the weight (WJ 2, of T is bounded below, and

(2) orb(T,x) has a nonzero limit point f given by
f =ape, +--- +aye, ( nite sum) for some scalars a;.
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A Remark on Theorem

If orb(T ,x) has a nonzero limit point, we can only conclude T is
hypercyclic but we cannot conclude that x is a hypercyclic vector,
and in fact not even a cyclic vector.

A vector x is a cyclic vector for T, if span orb(T,x) is dense in X.

Let (e,) be the canonical basis of ¢P.

o with Seceleanu (preprint, 2013): The vector x is a cyclic
vector for T, if

(1) the weight (WJ 2, of T is bounded below, and

(2) orb(T,x) has a nonzero limit point f given by
f =ape, +--- +aye, ( nite sum) for some scalars a;.

There are examples to show both (1) and (2) are needed for x to
be a cyclic vector.
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Proof of \(B) — (A)"

Suppose there exist a vector x = (Xg, X1,X2,...) € £ and a
non-zero vector f = (fo, f1,f2,...) € ¢P such that f is a limit point
of the orbit Orb(T, x).
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Proof of \(B) — (A)"

Suppose there exist a vector x = (Xg, X1,X2,...) € £ and a
non-zero vector f = (fo, f1,f2,...) € ¢P such that f is a limit point
of the orbit Orb(T, x).
Since f; # 0 for some j > 0, we assume without loss of generality
that fg # 0. Hence there exist an increasing sequence
{nx :k > 1} c N and an integer N > 0 such that
1 f

| T ™ x —f < oK < ’20|,

for all k > N. Then

T™x =T "™ (X0, X1, X2,...) = (W1 - Wp Xp,,...).
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Proof of \(B) — (A)"

Suppose there exist a vector x = (Xg, X1,X2,...) € £ and a
non-zero vector f = (fo, f1,f2,...) € ¢P such that f is a limit point
of the orbit Orb(T, x).
Since f; # 0 for some j > 0, we assume without loss of generality
that fg # 0. Hence there exist an increasing sequence
{nx :k > 1} c N and an integer N > 0 such that
1 f

| T ™ x —f < oK < ’20|,

for all k > N. Then

T™x =T "™ (X0, X1, X2,...) = (W1 - Wp Xp,,...).

Hence || T "«x —f|| > |wy - -Wp,Xn, — fo|. So there exists a
sequence {n, : k > 1} such that

|wi - - Wp, Xn, — fol < fo]/2,

for all K > N.
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\(B) = (A)" Completed

P ¢
Thus [fo|/2 < [wy -+ Wn,Xn,| and s0 572700

k > N. Hence we get that

< |Xp,| for all

[fol” p
m<|xnk’ ,fora"kZN .

Now since x € ¢P we have

!fOI" >

oo
< Xn [P < |IX]|P < 0.
2 G T 3 bnl? <
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\(B) = (A)" Completed

P ¢
Thus [fo|/2 < [wy -+ Wn,Xn,| and s0 572700

k > N. Hence we get that

< |Xp,| for all

[fol” p
m<|xnk’ ,fora"kZN .

Now since x € ¢P we have

!fOI" >

oo
< Xn [P < |IX]|P < 0.
Z(Wl T 3 bnl? <

It follows that (azn Y — 0. That is, there exists an increasing
wyi

sequence {ny} such that Wy -+ Wy, — 00 as K — oo.
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\(B) = (A)" Completed

f
Thus [fo|/2 < w1 - --Wp,Xp, | and so ﬁ

) < |Xp,| for all
k > N. Hence we get that

[fol”

p
m<|xnk’ ,fora"kZN.

Now since x € ¢P we have

[fol” < 1
20 2

k=N



Recall: A Zero-One Law for Orbital Limit Points

e with Seceleanu (2012): Let T : ¢P — ¢P be a unilateral
weighted backward shift. The following are equivalent:

(A) T is hypercyclic.
(B) There is a vector whose orbit has a nonzero limit point.
(C) There is a vector whose orbit has a nonzero weak limit point.

(D) There is a vector whose orbit has in nitely many members
contained in an open ball whose closure avoids the origin.
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Proof of \(C) =— (B)"

Let x = (X0, X1, X2, ...) € £P be a vector whose Orb(T,x) has
f = (fo,f1,f2,...) € £P as a non-zero weak limit point, with f,



Proof of \(C) =— (B)"

Let x = (X0, X1, X2, ...) € £P be a vector whose Orb(T,x) has
f = (fo,f1,f2,...) € £P as a non-zero weak limit point, with f, # 0.

Considering the weakly open sets that contain f, we get that for all
j > 1 there exists an n; > 1 such that |(T"ix —f,ex)| < Jl

That is [Wk1 -+ Wi Xkn, — fi| < 3, forall j > 1.

Next, we inductively pick a subsequence {n;, } of {n;} as follows:
1. Letj; = 1.
2. Once we have chosen j,, we pick j,+1 > jm such that
o0
k+nj, <njgand Y X |” < %
o im - TP
Thus we can assume, by taking a subsequence if necessary, that
o

1

i=j+1
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\(C) = (B)" Continued

o
Lety = Xqan, - €x+n, Clearly y is in £7, because x is.
i=1

Then Tmmy = ZXH,, T ™€psn,. Butk +n; < npeq foralli >1

and so k +n; < nm for all i < m. Thus smce T is a unilateral

backward shift we conclude that T "y = Zxk+n,- T ™8t

i=m
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\(C) = (B)" Continued

o
Lety = Xqan, - €x+n, Clearly y is in £7, because x is.
i=1

Then Tmmy = ZXH,, T ™€psn,. Butk +n; < npeq foralli >1
and so k +n; < nm for all i < m. Thus smce T is a unilateral

backward shift we conclude that T "y = Zxk+n,- T ™8t

I—m
Furthermore, since the vectors T "mey+.,, and T "ey.,. have
disjoint support for i # j, that is Tﬂe,:,,,(s) = 0 whenever
T meksn,(s) # 0, we have that

[Ty — fiex]]

o0
D Xicrn T

i=m+1

< | Wkt - - - Whany Xk — Ti) - €k +
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\(C) = (B)" Completed

Thus,
[Ty — fiex]|
) 1=p
< Wikt Wicrn Xk, — fil + [ 37 Kiewn ] |rT"mek+n,||P]
i=m+1
1=
< T+ i X P - [T (1P p<£+ L 0 amo
oom i=m+1 : -m W

Kit Chan Zero-One Laws for Hypercyclicity



\(C) = (B)" Completed

Thus,
[Ty — frex
0 1=p

< |Whap oW X — fi| + X [P+ T "€ g, [|P
>~ k+1 k+nmAk+np k k—+n; k—+n;

i=m+1

1=
< 14 i\x P T p<£+ L L oamoo
- m i=m+1 o - m \Vm .

Thus T "y — fre, in norm as m — oo, where fe, # 0 in £P, and
hence Orb(T, y) has a non-zero limit point. O

Kit Chan Zero-One Laws for Hypercyclicity



Bergman Spaces

Let be a region in C and H*°( ) be the algebra of all bounded
analytic functions on

Let A2( ) = {f: — C|f analytic, and [ |f|?dA < oo} be
the Bergman space.

If o € H®( ), then we de ne M- : A2( ) — A%( ) by M-f = of .
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Bergman Spaces

Let be a region in C and H*°( ) be the algebra of all bounded
analytic functions on

Let A2( ) = {f: — C|f analytic, and [ |f|?dA < oo} be
the Bergman space.

If o € H®( ), then we de ne M- : A2( ) — A%( ) by M-f = of .

o Godefroy & Shapiro (1991): The adjoint operator
M3 1 A%( ) — A%( ) is hypercyclic if and only if ¢( )
intersects the unit circle.
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A Zero-One Law for Adjoint Multiplication Operators

Let o € H*°( ) be a nonconstant function, and
M- A%( ) = A%( ).

e with Seceleanu (2012): The following are equivalent.
(A) Mz is hypercyclic.

Kit Chan Zero-One Laws for Hypercyclicity



A Zero-One Law for Adjoint Multiplication Operators

Let o € H*°( ) be a nonconstant function, and
M- A%( ) = A%( ).

e with Seceleanu (2012): The following are equivalent.
(A) Mz is hypercyclic.

(B) M has an orbit with a nonzero limit point.
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A Zero-One Law for Adjoint Multiplication Operators

Let o € H*°( ) be a nonconstant function, and
M- A%( ) = A%( ).

e with Seceleanu (2012): The following are equivalent.
(A) Mz is hypercyclic.

(B) M has an orbit with a nonzero limit point.

(C) Mz has an orbit which has in nitely many members contained
in an open ball whose closure avoids the origin.
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What about the Hardy Space?

Let D be the open unit disk, and let
H2 = {f D - D|f(z) =) a,z" analytic and ) _ [a,|* < oo}
0 0

be the Hardy space.

e with Seceleanu (2012): The result for the Bergman space
holds true for the Hardy space.

Let ¢ : D — D be an analytic map.

De ne C- : H?



What about the Hardy Space?

Let D be the open unit disk, and let

H2 = {f D - D|f(z) =) a,z" analytic and ) _ [a,|* < oo}
0 0

be the Hardy space.

e with Seceleanu (2012): The result for the Bergman space
holds true for the Hardy space.

Let ¢ : D — D be an analytic map.

De ne C- :H?2 - H2 by C-f =f o¢.

e with Seceleanu (2012): If o > 0 is an irrational number, and
©(z) =e? 7 z, then C- has an orbit with the identity function
(z) = z as a nonzero limit point, but C- is not hypercyclic.
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